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2. ABSTRACT

We present a shadow generation approach which allows
shadow maps to be generated object-wise and to be in-
stanced over multiple instances of an object. The algorithm
is designed for parallel light conditions, thus works perfect
for outdoor scenes. We generate separate shadow maps for
the different scene objects and generate their shadows in an
efficient postprocess that can be combined with other effects
such as deferred shading.

By this, several problems of standard shadow maps can
be solved. The shadow map resolution can be adapted per
object and thus solve shadow map resolution problems.
Further, the geometry render overhead for generating the
shadow map can be reduced, because only the shadow maps
for dynamic objects (and not for the whole scene) need to be
updated over time. The shadow computation in a postpro-
cessing step mitigates performance and resource problems
of previous per-object shadow map algorithms.

3. INTRODUCTION

Probably shadows are the simplest, yet also most important
global illumination effect. They give very important visual
cues about the relative positions of scene objects, and are
mandatory for realistic rendering. Due to their global nature,
shadow algorithms require global knowledge of the scene,
which makes them relatively expensive.

For interactive rendering, two main streams of shadow
generation exist: shadow maps and shadow volumes.
Shadow maps store as global representation of the scene the
depth buffer of the scene’s rasterization from the view point
of the light source. To determine whether a particular scene
point is in shadow, a simple reprojection and depth compar-
ison is needed. With current rendering hardware, the gen-
eration of shadow maps is an additional rendering pass, the
shadow map lookup is done as a cheap projective texturing
operation. The fact that the shadows are determined based on

a rasterized view of the scene results in aliasing problems,
that can result in arbitrarily bad shadow map undersampling
artifacts. A number of approaches tackle these using shadow
map hierarchies [FFBG01] or projective parameterizations,
e.g. [SD02].

The shadow volume of an object is the geometric descrip-
tion of the object’s shadow region [Cro77]. It can be quickly
computed for closed polyhedra with consistent orientation,
however this is usually done on the CPU. The shadow test
for a particular scene point then becomes an or-ed point-in-
polyhedron-test for all shadow volumes, which can be done
elegantly by rasterizing the shadow volumes and stencil
buffer counting. Shadow volumes do not suffer from alias-
ing, but are generally slower than shadow maps. In particular
fill rate becomes a major bottle neck for complex scenes.

In classical shadow maps, the shadow map must contain
the entire scene or at least the currently visible part of it. For
large scenes, very high resolution is required to obtain rea-
sonable shadow quality. Single moving objects require re-
generation of the entire shadow map. To account for this,
multiple shadow maps can be used [Reg04]. The scene is
split into several objects or groups, each of which gets a
shadow map on its own. By this, each object can get an
appropriate shadow map resolution. If some objects in the
scene are dynamic, only their shadow maps need to be up-
dated. During rendering, all these shadow maps are bound
and queried, which results in significant performance prob-
lems if the number of per-object shadow maps becomes
large. In this paper we propose to apply these shadow maps
one by one in a postprocessing pass. First, the scene is ren-
dered without shadows. Then, for each shadow map, we find
candidate shadow pixels by rasterizing a shadow volume for
the shadow caster’s bounding box. Only for image pixels in-
side this volume the shadow map lookup is done, and pixels
in shadow are marked or dimmed. The process is depicted in
Figs. 1 and 2. By this, the number of shadow map queries is
significantly reduced, and we avoid restrictions in the num-
ber of applicable shadow maps.

Our approach is particularly tailored for large outdoor
scenes with a large number of objects (typically vegetation)
generated by instancing. In this case, shadow maps can be
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Figure 1: We use multiple shadow maps for the different objects in the scene. For instanced objects, shadow maps are reused.

reused for all instances. We present a simple approach to in-
stance shadow maps also for rotated instances under parallel
lighting conditions.

In this paper we present an approach which is tailored
for large (e.g. outdoor) scenes with vegetation generated
by instancing. For such scenes, shadow maps usually suffer
from aliasing problems due to the size of the scene, whereas
shadow volumes are not practical for vegetation. Our ap-
proach is based on shadow maps, but also exploits ideas
from shadow volumes. The idea is simple: instead of a single
shadow map for the entire scene, we generate the shadows
for each shadow casting object seperately. After the scene
has been rendered without shadows, shadows are generated
as a post-process on the rendered image. For each shadow
caster, we find candidate shadow pixels by rasterizing a
shadow volume for the shadow caster’s bounding box. Only
for image pixels inside this volume a shadow map lookup
is done, and pixels in shadow are marked or dimmed. The
process is depicted in Fig. 1. For instanced objects, shadow
maps can be reused for all instances. We present a simple,
yet efficient and practical approach to instance shadow maps
also for rotated instances.

Instanced shadow mapping results in an overhead com-
pared to a single scene-wide shadow map. However, we
gain valuable flexibility which allows for significant opti-
mizations. Shadow map resolution is automatically focused
to shadow casters, so the typical undersampling artifacts of
single objects in large scenes can be solved. Shadow map
updates can be restricted to dynamic objects, reducing the
shadow map generation costs. The shadow maps can be
reused for instanced objects in the scene, thus allowing the
instanced shadow maps. Finally, we can generate transparent
shadows for objects with uniform transparancy.

In this paper, we describe the algorithmic details of
such instanced shadow maps, in particular the per-object
shadow generation post process, and applications of in-
stanced shadow maps. We further elaborate on instanced
shadow maps for instanced objects, where the instances vary
in rotations around one axis, as it is typical e.g. for objects
in outdoor scenes.

Ideally, the approach is combined with deferred shad-
ing, where the shading computation is only done when all
shadow information is available. Our approach is very flexi-
ble and can be easily combined with other approaches. So it

is not a problem to generate shadows partially by instanced
shadow maps and by shadow volumes. Furthermore, most
advanced shadow map techniques, e.g. penumbra maps for
the generation of soft shadows [WH03], can be combined
with instanced shadow maps.

4. PREVIOUS WORK

A rather old, yet still valuable overview on shadowing tech-
niques has been written by Woo et al. [WPF90]. We will
not discuss simplistic approaches such as planar shadows or
non-interactive ones such as ray traced shadows. Instead we
focus on shadow maps and shadow volumes, which are the
most often used algorithms in interactive graphics. We will
also only discuss algorithms for hard shadows. We are aware
that in terms of realism soft shadows would be a much better
choice. However, despite a lot of research in this area, soft
shadow methods are still very expensive and suffer from ro-
bustness problems.

Shadow Maps have been presented in the early days
of computer graphics [Wil78]. Early, aliasing problems of
shadow maps have been described. Reeves et al. [RSC87]
proposed filtering on the shadow map lookup results in order
to avoid aliasing (percentage closest filtering). Much later,
several approaches have been presented to support omnidi-
rectional lights and to adapt shadow map resolution accord-
ing to the current view [BAS02, FFBG01, SD02, WSP04,
MT04]. Shadow maps are in general the fastest method
for shadow generation, however despite significant improve-
ments aliasing remains a major problem and is often visible,
also in commercial games.

Shadow volumes [Cro77] don’t suffer from aliasing prob-
lems. For all shadow casters, the polyhedral shadow region
(shadow volume) is computed. Shadows are then generated
by rasterizing the shadow volumes and counting entry/exit
events for every pixel in the stencil buffer [Hei91]. Those
pixels with more entry than exit events lie in a shadow vol-
ume and are thus in shadow. Robustness problems have been
solved by Everitt et al. [EK03]. Generally, shadow gener-
ation by shadow volumes suffers from fill rate problems.
Lloyd et al. attack these by selective rendering of the poten-
tially large shadow volumes [LWGM04]. Furthermore, the
shadow volume computation is still mostly done on the CPU
and thus relatively expensive. First approaches to shift this
to the GPU have been presented [BS03], and latest hardware
with geometry shaders [Bly06] will support this better.
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Figure 2: Shadow generation for Al. Left: image without shadows. Center: bounding shadow volume rasterized hits red pixels.
For all red pixels a shadow map lookup is performed. Right: red pixels that are hidden by the shadow map are darkened.

There have also been approaches to combine shadow
maps and shadow volumes. McCool [McC00] generates
shadow volumes from shadow maps. Chen et al. [CD04] ren-
der shadows using shadow maps with bilinear filtering. For
all pixels with ambiguous shadow map result, shadow vol-
umes are rerendered. In ideal cases, the quality of shadow
volumes can be achieved at largely reduced fill rate.

Our algorithm shows similarities to another hybrid ap-
proach by Arvo et al. [AA03]. In their work, for every light
source all pixels inside the light frustum are determined by
rasterizing the light frustum and restricting the lighting and
shadow computation to the hit pixels. This approach is par-
ticularly helpful for many spot lights with restricted area of
influence. Instanced shadow maps work best for scenes with
a few light sources and multiple scattered objects. We do
not rasterize the light frusta, but a “bounding shadow vol-
ume” for every object, in order to be able to handle separate
shadow maps and restricting computations to relevant pixels.

The idea of object-wise shadow maps has been presented
in [Reg04]. However, their way to apply these shadows is
rather different. All shadow maps are bound at the same time
and a fragment program tests all bound shadow maps for oc-
clusion. In contrast, we bind the shadow maps one by one
and restrict the shadow map lookup to a tight candidate set
of potential shadow receiving pixels. By this, we have no
limitations in the number of possible shadow maps and re-
duce the number of shadow map lookups at the expense of
increased fillrate. Last but not least, our approach opens the
door for instancing shadow maps.

5. INSTANCED SHADOW MAPS

5.1. Light Source/Shadow Caster Pairs

The scene has to be partitioned into shadow casters. Typi-
cally, such shadow casters are players or scene objects which
are modeled separately and then composited to the complete
scene by a scene graph. Objects that only receive shadows,
such as walls or the ground can be omitted here.

For scenes with one light source, each of the shadow cast-
ers gets a shadow map on its own. Multiple instances of sin-
gle objects can easily share shadow maps, as long as they

only differ by translation and scaling. Shadow map reso-
lution can vary for different objects, depending on object
characteristics, object importance, distance to the viewer etc.
For the case of multiple light sources, generally a shadow
map is needed for each light source/shadow caster pair. For
each light source/shadow caster pair, a matrix describing the
relative transformation is stored. Optimizations are possi-
ble if the light sources have a limited range of influence
(e.g. spot lights, or lights with limited reach), so that light
source/shadow caster pairs that cannot influence each other
can be omitted. We will not further elaborate on this, but
want to emphasize the gain in flexibility.

As a result, for each light source/shadow caster pair, we
know a shadow map, and a matrix describing the relative
transformation. Of course, each transformation is usually
selected such that the shadow caster is fully visible in the
shadow map without wasting pixels at the boundary. This
can be achieved well by projecting the bounding box of the
shadow caster into the light view and searching the small-
est enclosing window on the image plane that encloses the
bounding box.

5.2. Shadow Map Updates and Reuse

For a static light source/shadow caster pair, shadow maps
can be reused from frame to frame. This includes pairs which
are moved in the scene but are fixed with respect to each
other, e.g. a lamp with a light source and a casing as shadow
caster. If a rigid object is only translated (and not rotated)
under parallel light (typical for outdoor scenes), the shadow
map can also be reused; only the matrix must be updated. As
an example, the shadow map of a racing car under sun light
only needs to be updated if the car rotates (significantly).

Analogously, a shadow map can be reused for multiple
instances of an object under parallel light, as long as the ob-
jects are not rotated relative to each other. This means that
we use the same shadow map multiple times, but under vary-
ing transformations. Later, we will present an approach that
can also handle multiple instances under simple rotations.
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5.3. Shadow Rendering

Instanced shadow maps are applied after the complete scene
has been rasterized. We need the resulting z-Buffer of the
camera view as input texture. The method computes the im-
age pixels which are shadowed by every light source/shadow
caster pair.

Each light source/shadow caster pair will only affect a
possibly small portion of the screen. We thus need a quick
estimate of the pixels that are affected by a particular pair.
This estimate is obtained by an approach in the style of
shadow volumes: First, we generate a shadow volume for
the bounding box of the shadow caster. In the following we
will call this the “bounding shadow volume”. We then deter-
mine all pixels inside this volume by rasterizing the bound-
ing shadow volume.

Finding these pixels inside the bounding shadow volume
can be done like in traditional shadow volume rendering
by rasterizing front and back faces and counting entry/exit
events in the stencil buffer. For our purpose, we can simplify
this test, and avoid the costly detour via the stencil buffer.
Because our bounding volumes of the shadow casters are
convex, also their bounding shadow volumes are, so only one
single entry and exit event is possible. Our entry test is made
by the z-test of rasterization: we render all front-facing facets
of the bounding shadow volume with enabled z-test. All gen-
erated fragments belong to a pixel with an entry event. In the
upper image of Fig. 3 these pixels are marked in red. What
leaves is to cull all pixels that also have an exit event. We
thus test for every fragment whether it is “behind” the vol-
ume (lower image) by evaluating the plane equation for all
backfacing volume facets, which can be done in a fragment
program. All such pixels (shown in yellow) can be immedi-
ately killed.

For all remaining pixels, we have to do the shadow map
lookup. For this, the pixel is transformed to shadow map
space using the current transformation matrix. This step re-
quires to read the depth value of the pixels, which should be
provided to the fragment shader as a simple texture. Then,
a simple shadow map lookup tells us whether the pixel in
question is shadowed. If not, we kill the fragment. All sur-
viving pixels are shadowed by the current shadow caster
with respect to the current light source. We can simply dim
these pixels using alpha-blending or can set a corresponding
bit in the stencil buffer, to obtain per-light source shadow
masks.

The fact that instanced shadow maps are applied as a post-
process makes further extensions possible. As an example,
we can assign transparencies to the shadow casters and ac-
cumulate transparent shadows. Instanced shadow maps can
also be well combined with deferred shading techniques. On
the downside, the need to bind the depth buffer as texture
foils hardware anti-aliasing.

5.4. Alternatives

If implemented as described above, the algorithm suffers
from the same problem as traditional shadow volumes do:
if the viewer is inside a volume, entry points will not be ras-
terized, because they are behind the viewer. Thus, the test

Figure 3: Determining image pixels inside a bounding
shadow volume. Top: pixels with an entry event (red), bot-
tom: pixels with entry and exit event (yellow).

will fail incorrectly, leading to missing shadows. A solu-
tion is to use a z-fail-method instead of z-pass, as described
in [EK03]. If we render the backfacing facets of the bound-
ing shadow volume with reversed depth test, fragments are
only generated if they are behind the current scene. Thus we
get all pixels that do not have an exit event, and we have to
test the remaining pixels against all front facing bounding
shadow volume facets. This approach can only work, if the
far plane for the current viewer is set to infinity, so that the
bounding shadow volumes are not incorrectly clipped at the
far plane.

Another alternative is to skip the exit point (z-pass) or en-
try point test (z-fail) in the fragment program. In Fig. 3 this
would mean that we perform the shadow map lookup for all
red pixels in the center left image, before the yellow pixels
in the center right image have been culled away. Since frag-
ment shader length can easily become a delimiting factor,
this might result in an overall improvement. However, our
shadow map lookup is a dependent texture lookup, because
the shadow map position depends on the image depth of the
pixel, which in turn has to be read from a texture. Thus the
time while this texture lookup is done can well be used for
the additional test.
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5.5. Instancing

Under parallel light, we can reuse a single shadow map of
an object for various instances of the object, as long as the
object is only translated and scaled. This has been used in
Fig. 1, where only one single shadow map of the flower vase
is used to generate the shadows of all four instances.

However, in practical examples, instancing is often tried
to be hidden, so that the instances are rotated and scaled
relative to each other. If the instance rotation angles are re-
stricted to a small set of angles, we can also precompute a
small set of shadow maps for all these rotations and select
the appropriate one for each instance. Alternatively, we re-
strict rotation to rotations around a single axis, and generate
shadow maps at e.g. 30o steps. For instances, we allow ar-
bitrary rotation angles, and interpolate the shadow from the
two closest shadow maps. The simplest solution is to deter-
mine the shadow for both shadow maps and interpolate the
result. However, this makes the interpolation well visible.

For instances of vegetation, we apply a trick that gener-
ates plausible shadows. We rotate the two closest shadow
maps to the desired position, and interpolate the two ob-
tained depth values. Then, the depth comparison is done with
this interpolated depth value. As a result, we achieve hard
shadows for all angles. The approach works well, as long as
the object is roughly cylinder shaped. Errors mainly happen
on the object due to wrong self-occlusion, however on trees
and bushes such errors are simply masked by the complex
structure. Popping becomes visible, if the light source or the
object are animated. This precomputation of a set of rotated
shadow map also works if single objects are dynamically ro-
tated around a single axis, e.g. a racing car as long as it does
not roll over. The approach is not applicable in the case of
point light sources. Here sampling a single rotation angle is
not sufficient, we would have to add another dimension for
view distance, where the curse of dimensionality results in
an explosion of required shadow maps.

6. IMPLEMENTATION AND RESULTS

We implemented instanced shadow maps under Windows
using OpenGL and GLSL 1.10. Light source/shadow caster
pairs are provided by the modeler. At the beginning of each
frame, all necessary shadow maps are generated or updated
and the matrices determined. A frame buffer object is used
for the initial, unshadowed rendering pass. The depth buffer
is bound as a texture to make it available to the following
render passes.

Fig. 4 shows the fillrate spent by instanced shadow maps.
For a single shadow map (left), part of the screen is over-
drawn once (red and green pixels with positive shadow test
result for the red pixels). For a more complex scene (center),
the bounding shadow volumes overlap, resulting in moder-
ately increased overdraw. The fillrate required for a shadow
is independent of the object’s geometric complexity, but di-
rectly related to its size, i.e. the small shadows for distant
trees are very cheap.

Fig. 5 shows rendering of an example scene with 105 in-
stances of a tree with 36.000 triangles each, i.e. a total of

3.8 million triangles. The trees are arbitrarily rotated around
the vertical axis. 12 shadow maps at 30 degrees steps with
resolution 5122 are used for the tree instances, occupying 12
Megabytes of video memory. Without shadows, the scene
renders on an nVIDIA GeForce 8800 at 63 frames per sec-
ond with resolution 1024x768. With shadows, the frame rate
drops to 43 fps (without shadow map regeneration), 30 fps
with shadow map regeneration. Standard shadow mapping
had a frame rate of 31 fps but with strong shadow artefacts
(using a 20482 shadow map).

7. CONCLUSION

In this paper, we presented a simple, yet efficient approach
to apply object-wise shadow maps. Instead of querying all
per-object shadow maps for every fragment, we apply the
shadow maps in a postprocess one by one, and restrict the
shadow map queries to the pixels that can be affected by
the shadow map. Compared to other per-object shadow map
techniques, our approach can efficiently handle a large num-
ber of shadow maps. It is not necessary to bind a large num-
ber of textures at once or to pack multiple shadow maps into
an atlas. Shadow maps can be reused for multiple instances
of an object. Our approach is particularly suited for large
outdoor scenes with many static, instanced objects (such as
vegetation) and some animated objects.

The main idea is to have separate shadow maps for all
scene objects. Compared to the normal single-shadow map
approaches, this gives us flexibility to provide sufficient
shadow map resolution to all objects, to partially reuse
shadow maps also in animated scenes, and to reuse shadow
maps for object instances.

Instanced shadow maps require memory overhead com-
pared to standard shadow mapping. In terms of fill rate,
they behave roughly like shadow volumes. With well-chosen
shadow casters and shadow map resolutions, shadow qual-
ity close to shadow volumes can be achieved. Compared to
shadow volumes, we avoid stencil buffer operations and do
not need to compute the shadow volume of a general object,
which is still costly and badly supported by current GPUs.
Instead, we have to generate a shadow volume of a box,
which can be done with a simple vertex shader, and render
per-object shadow maps, which only requires standard ras-
terization.

Moreover, instanced shadow maps can be easily com-
bined with other techniques, such as precomputed shadow
textures, shadow volumes, and many advanced shadow map
techniques.

8. BIOGRAPHY

Sebastian Buntin is a PhD student at the Computer Graph-
ics Group of the University of Erlangen-Nuremberg, located
in Bavaria, Germany. His main research focus is currently
the visualization and simulation of complex plant ecosys-
tems using modern graphics hardware.



INSTANCED SHADOW MAPS

Figure 4: Left: colored pixels are candidate pixels for the tree’s shadow. Shadowed pixels are drawn in red, unshadowed ones
in green. Center/right: complex scenes with visualization of generated overdraw.

Figure 5: 105 rotated instances with 3.8 million triangles in total, rendered at 43 frames per second.
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